
NeuroImage 163 (2017) 244–263
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier .com/locate/neuroimage
Robust inter-subject audiovisual decoding in functional magnetic resonance
imaging using high-dimensional regression

Gal Raz a,b,c,*, Michele Svanera d, Neomi Singer a,c,e, Gadi Gilam a,e, Maya Bleich Cohen a,
Tamar Lin a, Roee Admon f, Tal Gonen a,g, Avner Thaler a,c,h,i, Roni Y. Granot j, Rainer Goebel k,
Sergio Benini d, Giancarlo Valente k

a Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
b Film and Television Department, Tel Aviv University, 69978 Tel Aviv, Israel
c Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
d Department of Information Engineering, University of Brescia, 38, 25123 Brescia, Italy
e School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
f Department of Psychology, University of Haifa, 3498838 Haifa, Israel
g Department of Neurosurgery, Tel Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
h Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
i Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
j Musicology Department, Hebrew University of Jerusalem, 9190501 Jerusalem, Israel
k Department of Cognitive Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
A R T I C L E I N F O

Keywords:
fMRI
Audiovisual decoding
Motion pictures
Kernel ridge regression
Sound loudness
Optical flow
Face
Motion pictures
* Corresponding author. Kfar Daniel 253, 7312500, Isr
E-mail address: galraz@post.tau.ac.il (G. Raz).

https://doi.org/10.1016/j.neuroimage.2017.09.032
Received 3 May 2017; Received in revised form 14 Septe
Available online 20 September 2017
1053-8119/© 2017 Elsevier Inc. All rights reserved.
A B S T R A C T

Major methodological advancements have been recently made in the field of neural decoding, which is concerned
with the reconstruction of mental content from neuroimaging measures. However, in the absence of a large-scale
examination of the validity of the decoding models across subjects and content, the extent to which these models
can be generalized is not clear. This study addresses the challenge of producing generalizable decoding models,
which allow the reconstruction of perceived audiovisual features from human magnetic resonance imaging (fMRI)
data without prior training of the algorithm on the decoded content. We applied an adapted version of kernel
ridge regression combined with temporal optimization on data acquired during film viewing (234 runs) to
generate standardized brain models for sound loudness, speech presence, perceived motion, face-to-frame ratio,
lightness, and color brightness. The prediction accuracies were tested on data collected from different subjects
watching other movies mainly in another scanner.

Substantial and significant (QFDR<0.05) correlations between the reconstructed and the original descriptors
were found for the first three features (loudness, speech, and motion) in all of the 9 test movies (R¼0.62,
R ¼ 0.60, R ¼ 0.60, respectively) with high reproducibility of the predictors across subjects. The face ratio model
produced significant correlations in 7 out of 8 movies (R¼0.56). The lightness and brightness models did not show
robustness (R¼0.23, R ¼ 0). Further analysis of additional data (95 runs) indicated that loudness reconstruction
veridicality can consistently reveal relevant group differences in musical experience.

The findings point to the validity and generalizability of our loudness, speech, motion, and face ratio models for
complex cinematic stimuli (as well as for music in the case of loudness). While future research should further
validate these models using controlled stimuli and explore the feasibility of extracting more complex models via
this method, the reliability of our results indicates the potential usefulness of the approach and the resulting
models in basic scientific and diagnostic contexts.
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1. Introduction

“Mind reading” based on neural decoding is an ambitious line of
research within contemporary neuroscience. Assuming that certain psy-
chological processes and mental contents may be encoded in the brain as
specific and consistent patterns of neural activity, researchers in this field
aim to decode and reconstruct them given only the neuroimaging data. In
order to “read” stimuli out of one's brain, researchers adopt different
machine learning approaches and apply various pattern analysis methods
that link local or distributed neural activity patterns with specific au-
diovisual features.

Neural decoding refers to the prediction of a stimulus features from
measured brain activity (Schoenmakers et al., 2013) (fMRI data in our
case). Several notable neural decoding achievements have been reported
so far, mainly in studies employing functional magnetic resonance im-
aging (fMRI), but also in intracranial recording and electro- and
magneto-encephalography experiments (for review, see Chen et al.,
2013; Haxby, 2012). Reported decoding classification accuracies for
out-of sample data commonly range between 70 and 90% (see Poldrack
et al., 2009), and correlation as high as 0.99 between predicted and
observed continuous descriptors was demonstrated (Valente et al.,
2011). Decoding targets vary and include mental states such as action
intentions (Haynes et al., 2007), reward assessment (Kahnt et al., 2011)
and response inhibition (Cohen et al., 2010; Poldrack et al., 2009);
low-level features such as visual patterns in dynamic video (Nishimoto
et al., 2011), geometrical patterns, text (Fujiwara et al., 2009; Miyawaki
et al., 2008; van Gerven et al., 2010), and optical flow acceleration in a
video game (Chu et al., 2011; Valente et al., 2011); and semantic ele-
ments such as animal and objects categories (Connolly et al., 2012;
Haxby et al., 2001, 2011), objects and actions in a hierarchical semantic
space (Huth et al., 2012), visual imagery content during sleep (van
Gerven et al., 2010), and actions and events in a video game (Chu et al.,
2011; Valente et al., 2011).

This productive stream of research supports the appealing vision of
generating a repertoire of “fMRI fingerprints” for a wide range of mental
states and perceptual processes (or “cognitive ontology”, see Poldrack
et al., 2009). Ideally, such repertoire will facilitate robust and rich neural
decoding for any subject independently of prior training and using any
standard MRI scanner. The generation of a reliable repertoire of this kind
is valuable both in terms of basic science (providing a reproducible and
comprehensive ground truth for brain-function mapping) and applicable
technology (in diagnosis, for instance; see Cohen et al., 2011).

Strong evidence for the generalizability of such repertoire of func-
tional models of the brain can be gained by demonstrating their perfor-
mance under conditions of high heterogeneity across the training and the
test data. For this end, it is necessary to show that these models facilitate
successful decoding also when analyzing stimuli that are different from
those on which the algorithm was trained. However, eminent neural
decoding achievements were gained using a within-subject design
including only five subjects or less (e.g., Horikawa et al., 2013; Huth
et al., 2012; Miyawaki et al., 2008; Nishimoto et al., 2011), which limits
the examination of the reproducibility of the results. Thus, the key aspect
of inter-subject generalizability of neural decoding has yet to be sys-
tematically investigated (Chen et al., 2013).

Confronting the limitations of the within-subject design in neural
decoding, Haxby and colleagues have recently demonstrated the feasi-
bility of between-subject classification. This group developed methods
for cortical anatomy alignment for different subjects based on the
maximization of the inter-subject similarity of blood oxygen level
dependent (BOLD) reaction patterns (Haxby et al., 2011; Sabuncu et al.,
2010) and functional connectivity structures (Conroy et al., 2013). These
studies have demonstrated that between-subjects classification may yield
success rates equivalent to those of within-subject classification. Suc-
cessful decoding of data of out-of-sample individual was also reported in
few other studies that did not implement inter-subject alignment
methods that rely on functional data. Shinkareva et al. (2008) and
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Poldrack et al. (2009), reached average accuracy rates of ~80% in
classifying visual input and task type, respectively. Cohen and colleagues
(Cohen et al., 2011) decoded response inhibition related variables with
above-chance correlation values of 0.4–0.5 between the predicted and
real parametric values.

In keeping with the notion that a compelling validation of neural
decoding method relies on its success under highly heterogeneous con-
ditions, the current work introduces a markedly increased variability
across several experimental dimensions. First, we aimed to decode
continuous time-varying features, which change on a moment-to-
moment basis. Second, we tested the decoding reliability on a set of
different movies, comprising highly heterogeneous, complex, and natu-
ralistic stimuli. Lastly, the validation of the function-brain models was
performed using movies that were not employed in the training pro-
cedure with data collected in a different MRI scanner from un-tested
individuals. An overview of the study is given in Fig. 1.

We combined data from 234 movie-viewing sessions (with 5 different
clips) for the training of our algorithm and the cross-validation of the
resulting model (Table 1). The validity of the models was tested using an
independent sample of 63 sessions (with 9 other clips). We selected
relatively coarse features across three elementary perceptual domains:
audio, vision and motion. The selected features were sound loudness
(loudness), speech presence (speech), detected motion (motion), face-to-
frame dimension ratio (face ratio), perceived lightness, and brightness.
These audiovisual features were extracted using both manual and auto-
matic annotation tools.

In order to decode these continuous features from the fMRI data we
used linear kernel ridge regression (KRR) with generalized cross-
validation (GCV) (Golub et al., 1979). We chose a kernel version since
it is particularly efficient when the number of data points is considerably
lower than the number of measurable properties, or features (in our case
time repetitions and number of voxels, respectively; see Golub et al.,
1979). The combination of L2-norm penalization with GCV is relatively
computationally inexpensive when compared with iterative kernel
methods such as Relevance Vector Regression and Gaussian Processes,
while still achieving good performance, and it allows for fast permuta-
tions in order to ascertain non-parametrically statistical significance
(Valente et al., 2014). We used a linear kernel for several reasons. First,
by using a linear model we allow for the reconstruction of descriptors of
specific features as linear combinations the weighted BOLD time series,
with the advantage of a straightforward interpretation of the fMRI
models relative to non-linear kernels and other complex pattern recog-
nition methods such as artificial neural networks. Second, the optimi-
zation of non-linear kernel hyperparameters would increase the
computational time of several orders of magnitude. Finally, the large
number of dimensions, compared to the available samples in our prob-
lem, makes it difficult to exploit the increased flexibility provided by
non-linearities, increasing the risk of overfitting. An alternative to linear
kernel ridge regression could be to use a linear ridge regression after
projecting the data onto the subspace spanned by the principal compo-
nents, which would result in similar computational burden if all the
principal components are retained.

In addition to the extraction of spatial brain models of continuous
audiovisual features, we temporally optimized the models. In specific, we
applied time-lag optimization following evidence that multi-voxel
pattern analysis (MVPA) classification may be improved by fitting
different temporal hemodynamic response models to different brain re-
gions (Kohler et al., 2013). Due to the high dimensionality of the problem
we used simulated annealing (Kirkpatrick et al., 1983), a heuristic al-
gorithm based on thermodynamic principles, to optimize the temporal
parameters of the decoding models. This procedure was performed on a
cross-validation subset of the data.

Thus, we produced spatio-temporal decoding maps, which assign
optimized lag and weight values to every voxel in the brain to reconstruct
specific features. Our study examined the extent to which various au-
diovisual features can be robustly and reliably reconstructed by these
www.manaraa.com



Fig. 1. The study outline.
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methods for cinematic stimuli given different subjects and experimental
context. We further explored the functional significance of the specific
spatio-temporal brain models resulting from our analysis.

Finally, we were interested in the potential of generalized fMRI
models to reveal functionally meaningful inter-group differences. In
specific, we hypothesized that the loudness descriptor will be recon-
structed more accurately when applying the loudness model to data
obtained from a group of individuals with higher musical experience.
This hypothesis relies on the assumption that musical training may in-
crease the sensitivity to loudness modulations since musicians are
commonly required to perform subtle manipulations of this feature
(Bishop et al., 2013), which has a key role in musical expression (Juslin
and Laukka, 2003). Indeed, musicians show higher ability to detect
transient silent gaps (~3ms) in a quasi-continuous sound (Rammsayer
and Altenmüller, 2006; Zendel and Alain, 2012), indicating exquisite
sensitivity to the envelop of sound. Moreover, recent evidence suggests
that loudness time courses can be reconstructed more accurately by
expert musicians during a musical imagery task (Bishop et al., 2013). We
hypothesized that (a) a reliable predicted descriptor will be generated
based on the loudness model and fMRI data recorded during music
listening (i.e., generalization of the model from audiovisual to auditory
paradigms); (b) greater veridicality of the predicted loudness descriptor
will be obtained for the group of individuals with higher musical expe-
rience (i.e., the modeling will be sensitive to group differences).

2. Materials and methods

2.1. Stimuli and data collection

All data were collected from healthy volunteers without known his-
tory of neurological or psychiatric disorder. The participants had at least
12 years of education with Hebrew as their spoken language. They signed
a consent form approved by the ethical committees of the Tel Aviv
Sourasky Medical Center. For demographic details, see Table 1. For an
overview of the study, see Fig. 1.

In the movie conditions, the participants were instructed to passively
view excerpts from commercial movies that were presented to them
using an LCD projector. In the music condition, the participants passively
listened to musical excerpts. We trained the neural decoding algorithm
and tested its validity using two independent samples (Table 1):

2.1.1. Training set
To generate the decoding models for the audiovisual features of
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interest, a training data set was created by pooling 234 fMRI scans from
different studies (including Raz et al., 2013, 2012; few scans were added
after publication). In several cases, the same participant watched two of
the movie clips. Thus, for 23 subjects we included data recorded during
the viewing of both Sophie's Choice and Stepmom clips. Valid data for
The Ring and The X-Files were collected from the same individual in four
cases. Due to technical failures (lagging video playback and playback
errors) and exaggerated head motions (deviations higher than 1.5 mm
and 1.5� from the reference point), 27, 20, 21, 3, and 6 runs were dis-
carded in the cases of Avenge, Sophie, Stepmom, The Ring 2, and The X-
Files, respectively. Table 1 summarizes relevant details on the partici-
pants, movie contents, and sample sizes.

2.1.2. Testing set

(i) Movie viewing: The testing data set included 63 scans that were
obtained during the viewing of 9 movie clips. Data for the clips
Black Swan and The Fly were collected from two independent
groups including 8 and 20 volunteers, respectively. Five and two
scans were discarded due to exaggerated head motions (threshold:
1.5 mm and 1.5�), respectively. In this case, the acquisition was
performed using the same scanner that was used to obtain the
training data. We selected 7 additional clips specifically for the
validation procedure to test the robustness of the neural decoding
across various contexts. For this aim, we relied on a database of
movie clips classified into different genres based on emotional
annotation by a large sample group (Schaefer et al., 2010). One
clip was selected from each of the six emotional categories
examined in this study. These clips were taken from the films Dead
Poet Society, Forrest Gump, Saving Private Ryan, Se7en, The
Shining, and There is Something About Mary, representing the
categories Sadness, Tenderness, Disgust, Anger, Fear, and
Amusement, respectively. A seventh excerpt, taken from the
documentary film Denali, was added as a neutral clip (following
Rottenberg et al., 2007). These seven clips were displayed to five
participants in another MRI scanner.

(ii) Music listening: The participants passively listened to three
recorded piano pieces: (1) Ricercatas 1&2 of Gy€orgy Ligeti's
Musica Ricercata (hereafter referred to as LM; 7:41 min), (2)
Philip Glass's “Hours” (GH, 7:03 min) from the soundtrack of the
film The Hours. (3) Modest Mussorgsky's Night on Bald Mountain
(MN; 10:57 min). Data for the first two pieces were previously
analyzed in a different context (Singer et al., 2016). Four, two, and
www.manaraa.com
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Table 1
Details on materials and samples used in the study. The sample size indicates the net number of scans after dropout due to technical reasons and head motions.

Movie Data

Movie details Sample details

Training set

Film title Duration
(min)

Theme Relevant
Reference

Sample
size

Dropout Average ± std age
(years)

Females/
males

Avenge But One of My Two Eyes (Mograbi,
2006)

5:27 A political activist confronts with Israeli soldiers (Raz et al., 2016) 74 27 19.51 ± 1.45 0/74

Sophie's Choice (Pakula, 1982) 10:00 A mother is forced to choose which of her two children will be taken from her (Raz et al., 2012) 44 20 26.73 ± 4.69 25/19
Stepmom (Columbus, 1998) 8:21 A mother talks with her children about her future death (Raz et al., 2012) 53 21 26.75 ± 4.86 21/32
The Ring 2 (Nakata, 2005) 8:15 A child is lost in a bazaar; The child and his mother are attacked by deer (Raz et al., 2016) 27 3 26.41 ± 4.12 11/16
The X-Files, the episode “Home” (Manners,
1996)

5:00 Zombies attack a couple in their home (Raz et al., 2016) 36 6 23.70 ± 1.23 14/22

Testing set

Film title Duration
(min)

Theme Relevant
Reference

Sample
size

Dropout Average ± std age
(years)

Females/
males

Alaska's Wild Denali (Thomas, 1997) 5:00 Nature documentary with narration (Rottenberg et al.,
2007)

5 0 26.6 ± 4.33 4/1

Black Swan (Aronofsky, 2010) 9:00 A ballet dancer experiences a series of hallucinations NA 8 2 31.63 ± 8.1 3/5
Dead Poet Society (Weir, 1989) 5:18 Parents find out that their son committed a suicide (Schaefer et al.,

2010)
5 0 26.6 ± 4.33 4/1

Forrest Gump (Zemeckis, 1994) 5:21 The protagonist is introduced to his unknown son for the first time (Schaefer et al.,
2010)

5 0 26.6 ± 4.33 4/1

Saving Private Ryan (Spielberg, 1998) 6:18 American troops landing on Omaha Beach during World War II. (Schaefer et al.,
2010)

5 0 26.6 ± 4.33 4/1

Se7en (Fincher, 1995) 6:18 A murdered tells a detective that he beheaded his pregnant wife (Schaefer et al.,
2010)

5 0 26.6 ± 4.33 4/1

The Fly (Cronenberg, 1986) 8:15 A man is transformed into a giant fly after conversation with his former lover and
attacking her friend

NA 20 5 42.55 ± 7.47 8/12

The Shining (Kubrick, 1980) 5:21 A man pursues his wife with an axe (Schaefer et al.,
2010)

5 0 26.6 ± 4.33 4/1

There is Something About Mary (Farrelly and
Farrelly, 1998)

5:00 A man fights with his girlfriend's dog (Schaefer et al.,
2010)

5 0 26.6 ± 4.33 4/1

Music Data

Music piece title Duration
(min)

Author Relevant
Reference

Sample
size

Dropout Average ± std age
(years)

Females/
males

Musica Ricercata 7:41 Gy€orgy Ligeti (Singer et al.,
2016)

32 8 25.8 ± 3.71 18/14

Hours 7:03 Philip Glass (Singer et al.,
2016)

33 7 25.56 ± 3.67 19/14

Night on Bald Mountain 10:57 Modest Mussorgsky (Singer et al.,
2016)

30 10 25.82 ± 3.7 17/13
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six scans were discarded due to excessive head motions (<1.5 mm
or 1.5�) in LM, GH, and MN, respectively. Data of two subjects
were excluded due to cyclic noise, probably resulting from a
technical failure (as in Singer et al., 2016). The scanning was
terminated for two other subjects due to claustrophobia. One GH
session was not completed due to technical issues.
2.2. Image acquisition and preprocessing

The data for this study were collected using two scanners located at
the Tel-Aviv Sourasky Medical Center. The training and the testing data
for two of the movies (Fly and Black Swan) and all of the music condi-
tions were acquired by a 3 T Signa Excite scanner (GE Medical Systems,
WI, USA) with an 8-channel head coil. All other testing data were ob-
tained via 3T Siemens system (MAGNETOM Prisma, Germany) with a 20-
channel head coil. Active noise canceling headphones (Optoacoustics)
were used during the scans.

2.2.1. Movie data
Identical scanning parameters were set across the scans in both

scanners. For structural scanning, we used a T1-weighted 3D axial
spoiled gradient echo (SPGR) pulse sequence with the following pa-
rameters: TR/TE ¼ 7.92/2.98 ms, slice thickness ¼ 1 mm, flip
angle¼ 15�, pixel size¼ 1mm, FOV¼ 256� 256mm. Functional whole-
brain scans were performed in interleaved order with a T2*-weighted
gradient echo planar imaging pulse sequence (time repetition [TR]/
TE ¼ 3000/35 ms, flip angle ¼ 90, pixel size ¼ 1.56 mm,
FOV ¼ 200 � 200 mm, slice thickness ¼ 3 mm, 39 slices per volume).

2.2.2. Music data
The scans were performed using a GE 3T scanner as specified above.

T1-weighted SPGR parameters were TR/TE ¼ 8.9/3.5 ms, flip
angle ¼ 13�, voxel size ¼ 1 � 1 � 1 mm, FOV ¼ 256 � 256 mm, slice
thickness ¼ 1 mm. The recording and preprocessing of the T2*-weighted
images were identical to the procedures applied on the movie data except
for a FOV of 220 � 220 mm, and a slice number of 38 for four scans (of 2
participants) due to technical errors.

We pre-processed and registered all data to a standardized Talairach
anatomical template via Brainvoyager QX version 2.3 (Brain Innovations,
Maastricht, Netherlands) with manual verification of the automated
corregistration. For the detection and correction of headmotions we used
trilinear and sinc interpolations respectively, applying rigid body trans-
formations with three translation and three rotation parameters. High
pass filtering of 3 cycles per time course and spatial smoothing with a
6 mm FWHM kernel were applied. Physiological noise correction was
performed by regressing out the mean ventricles signal from the blood-
oxygen-level dependent (BOLD) time course. An ICBM 452 probability
map (http://www.loni.usc.edu/atlases) for the ventricles (thresholded at
99%) was used to generate the mask. We confined all analyses to 42309
voxels included in a gray matter mask. The mask was created by
thresholding ICBM 452 map to exclude voxels with probability lower
than 80% of being classified as gray matter (thus encompassing both
cortical and brain stem regions).

Data were discarded due to exaggerated head motions in case of de-
viations higher than 1.5 mm and 1.5� from the reference point. For the
total numbers of scans that were dropped out due to head motions and
various reasons, see Table 1.
2.3. Extracting audiovisual descriptors

Six features were annotated for all movies: color brightness,
perceived lightness, face-to-frame ratio, motion detection, sound loud-
ness, and speech presence. Loudness was annotated for the three music
pieces as well.
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2.3.1. Color brightness
Brightness measures the perception elicited in a human by the

luminance emitted or reflected by a visual target, meaning that there is a
distinction between the physical intensity of the light by an object (i.e.,
luminance), and the description of how the human visual system per-
ceives it (i.e., brightness). Brightness is then a subjective measure in the
sense that it describes the color “sensation” with respect to a standard
human observer. Brightness directly appears in different representations
of color spaces: for example in HSV color space (hue, saturation, and
brightness or value) it appears as the third color coordinate or in the RGB
color space as the arithmetic mean of the red, green, and blue color co-
ordinates. In this work it is computed as the mean value of pixel in-
tensities extracted from images obtained at one frame per second and
then averaged to match the BOLD temporal resolution.

2.3.2. Perceived lightness
Even when they share the same luminance, colored lights seem

brighter than white light with the same luminance. This perceptual ef-
fect, known as the Helmholtz-Kohlrausch effect, states the difference
between brightness and lightness: brightness is the intensity of the object
independently from the light source (bottom row of Fig. S1), while
lightness is the brightness of the object in respect to the light reflecting on
it (top row of Fig. S1). In order to capture this perceptual amplification of
color, wemake use of the Retinex theory (Land andMcCann, 1971; Morel
et al., 2010), which aims at reproducing the sensory response to color
stimuli by the human visual system. This model was developed starting
from the assumption that actual color sensations are related to the
intrinsic reflectance of objects rather than to the radiance values captured
by the eyes (Bertalmío et al., 2009). Therefore the application of Retinex
should turn a generic input picture into an image closer to what a human
observer would perceive if she were looking at the same scene when the
picture was taken. In this work we use a fast implementation of Retinex
proposed by Limare et al. (2011) to derive a perceived lightness
descriptor which accounts for the chi-squared distance between image
histograms computed on video frames before and after the application of
Retinex algorithm.

2.3.3. Motion detection
To transmit a sensation of speed and dynamism or a feeling of quiet

and tranquility in a movie scene, directors may rely on camera and object
motion. In order to capture motion dynamics we extract a map which is
descriptive of the moving objects by adopting the algorithm by Barnich
and Droogenbroeck (2011). This work extends the idea of background
subtraction, which requires the pixel-wise comparison between the static
background with the current frame, by storing for each pixel a set of
values taken in the past at the same location and in its neighbourhood.
While other analyses in this work are carried out on individual frames,
the evaluation of motion is conducted directly on video data. The back-
ground model is updated every frame, and a binary motion map is ob-
tained every five frames.

2.3.4. Face-to-frame ratio
To estimate face-to-frame ratio, we used a method proposed by Zhu

and Ramanan in (Zhu and Ramanan, 2012), which is highly effective in
capturing global elastic deformation of faces, ensuring high recall rates
also from non-frontal views. This algorithm employs a tree structure
composed by a set of parts (e.g., histogram of oriented gradients
descriptor) modeling every facial landmark as a part, and uses global
mixtures to model topological changes due to viewpoint. Authors allow
different mixtures to share part templates, so that it is possible to model a
large number of views with low complexity. Finally, all parameters of this
model, including part templates, modes of elastic deformation, and
view-based topology, are discriminatively trained in a
max-margin framework.

We annotated only information about the ratio of the largest face in
the image to the total area of the frame, assuming that the viewer
www.manaraa.com
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attention is mainly captured by the character at the closest camera dis-
tance. Faces were detected each second, and the final descriptor was
averaged over 3-s intervals to fit the BOLD signal resolution. Since the
excerpt from the film Denali included no human face, a face-to-frame
ratio descriptor was not produced for this film.

2.3.5. Sound loudness
Sound loudness, originally defined by Fletcher and Munson (1933),

describes the relationship between the measured sound pressure level
and the perceived intensity of the sound from a “standard” human ear
system. As the ear is less sensitive to low audio frequencies, A-weighting
filtering (http://soundmetersource.com/iec-61672-1.html, retrieved
2013-04-29) is applied to the frequency spectrum of the audio signal.

The frequency attenuation of the A-weighting filter corresponds to an
empirical average obtained across a broad sample of perceptual experi-
ments. Fast Fourier transform (FFT) is applied on the audio signal to
estimate the frequency spectrum, which is then weighted using a closed-
form expression for the A-weighting filter. In order to determine the
signal level in dBA, the total signal energy is then integrated by calcu-
lating the energy within each data window by applying Parseval's rela-
tion in the frequency-domain.

2.3.6. Speech presence
Despite considerable advancements in automatic speech detection

and discrimination (e.g., Panagiotakis and Tziritas, 2005; Pikrakis and
Theodoridis, 2014) our attempts to apply such procedures to the complex
soundtracks of the selected clips yielded disappointing results. Therefore,
speech presence was manually annotated to produce binary indices for
the existence of an utterance within 1-s time bins. The annotated time
courses were down-sampled to fit the BOLD temporal resolution by
computing themedian value for each three subsequent time bins (with no
overlap). The resampled annotation, which was produced by a single
rater, showed considerably high reliability compared with an indepen-
dent rater's annotation for seven of the testing set clips: identical values
between annotations were found in 93.7% of the time points. Therefore,
further analyses relied on annotations by the first rater.
2.4. Data analysis

The training data set was randomly split into two subsets. Spatial
decoding and permutation test were performed on the larger subset,
which included 75% of the data. The other subset was used for temporal
optimization, and the selection of normalization method.

2.4.1. Generating spatial decoding model
Given the high dimensions of the problem, we applied high-

dimensional multi-voxel regression using a linear kernel (Valente et al.,
2011). The linear kernel remaps the original temporally concatenated
fMRI data X, of size n (time-points) � s (subjects)-by-p (voxels), into a
kernel matrix K:

K ¼ XXT (1)

of dimension n � s-by-n � s, where the regression is carried out. The
original problem of linking targets and fMRI data is therefore recast in the
following linear regression:

y ¼ Kwþ ε (2)

where y is the target n � s dimensional vector and K is the kernel matrix.
In our case, y is the target descriptor (e.g., loudness time series), and K is
built from X, the temporal concatenation across subjects of Z-scored
time-series, as shown in equation (1); w is an n � s dimensional vector
that weights the different fMRI volumes to predict y. With this approach,
the regression problem is more tractable, since it is done in a space of
dimension n � s, whereas in the original space regression would be
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performed in a space of dimension p, with p > n � s (in our work, p and
n � s are roughly 43,000 and 25,000 respectively).

When new data X1 are used, the predicted target y1 is estimated by
applying the linear model w on the new kernel K1 ¼ X1XT , resulting in:

y1 ¼ K1w ¼ X1XTw ¼ X1β (3)

where the p-dimensional vector β ¼ XTW is used to predict a target based
on the original fMRI data and can be used to create predictive brainmaps.

We assessed the similarity between the reconstructed time series and
the target descriptor using Pearson's correlation coefficient:

Rf ¼ r
�
yf ;Xβf

�
(4)

where yf and βf are the time series and the weights vector for a specific
feature f, respectively. Since the prediction is carried out using new
subjects, new movies and in some cases different scanners, the first and
second order statistics of both the BOLD time series and the targets could
be different between training and testing data. We therefore z-scored
training and testing fMRI data and targets separately and did not aim at
reconstructing the descriptor in absolute terms, hence the choice of a
similarity measure such as Pearson's correlation coefficient (that was
employed in the context of multivariate regression in the Pittsburgh
Brain Activity Interpretation Competition, PBAIC 2007 (Valente et al.,
2011)), complemented by a non-parametric permutation test to deter-
mine significant differences from chance.

In the training and the validation data sets, X and yf were concate-
nated over scans so that the total number of time points n ranged from
23723 to 25482 and from 7014 to 8773 (depending on the random
assignment of scans to the groups), respectively. The descriptors could be
Z-scored either before or after concatenation. The normalization method
that yielded higher Rf in the cross-validation group was selected. Thus, Z-
scoring was performed after concatenation in the case of motion and face
ratio descriptors, and before concatenation in all other cases.

The estimation of w with least squares is prone to overfitting (Bishop,
2007), and regularization should be employed. Among the possible
choices, ridge regression is a computationally attractive and yet powerful
method to estimate a weighting w that achieves good generalization
performance; in the estimation a quadratic term is added to penalize
solutions with large weights (which likely result from overfitting):

y ¼ Kwþ λ
��jwj��2 þ ε (5)

where jjwjj2 denotes the L2-norm of w. The estimation of this new model
leads to a close-form solution dependent on the regularization strength λ:

bwðλÞ ¼ ðKTK þ λIÞ�1
KTy (6)

where I is a n � s by n � s identity matrix.
To optimize the regularization parameter λ we used generalized cross

validation (GCV-KRR); (Golub et al., 1979), which is based on the
minimization of a cost function weighting simultaneously both data fit
(numerator) and model complexity (denominator):

VðλÞ ¼
1
n

����
���� I � AðλÞy

������2�
1
n TrðI � AðλÞÞ

�2 (7)

where Tr denotes the trace and

AðλÞ ¼ KðKTK þ λIÞ�1
KT (8)

We empirically tested bλ in the range of 107 � bλ � 1012 with bλ
changing logarithmically in increments of 0:5. For all of the audiovisual
features we found the global minimum of VðλÞ to fall within this range. It
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is worthmentioning that the GCV procedure uses all the training data and

does not necessitate of a nested loop to optimize bλ. This has the advan-
tage of selecting the suitable regularization for the amount of examples
available: since the amount of regularization depends on the available
training data, a nested cross-validation procedure would tend to select a
stronger regularization since fewer examples are available for training,
whereas using all the training data does not suffer from this problem.

To assess the quality of the decoding, we first reconstructed a target
time series Xs;mβf for every subject s, moviem, and feature f in the test set.
We then computed Pearson's correlations to compare the individual and
the average prediction over subjects ðXmβf Þ with the target time series.

We performed a voxel-wise testing of the weights in the resulting
maps using a non-parametric permutation test. For each descriptor we
generated 10,000 corresponding scrambled time series by implementing
a Daubechies mother wavelet (Daubechies et al., 1992) on the signal and
decomposing it into 7 levels with 4 vanishing moments. This type of
decomposition, applied on the descriptor after it was convolved with an
estimated HRF, keeps the autocorrelation structure of the original signal
(Bullmore et al., 2001). In each level, we resampled the details co-
efficients and reconstructed the time series using inverse wavelet trans-
form. By applying GCV-KRR on the training data with the permuted
descriptors as the target time series and the optimal λ per descriptor, we
generated 10,000 models whose weights served as null-distribution for
each voxel. Based on these null distributions, we thresholded the original
weight map using a double-sided test and correcting for multiple com-
parisons at qFDR<0.05.

2.4.2. Testing the decoding accuracy
To estimate the significance of the correlation between the recon-

structed predictors and the “ground truth” descriptors, we created a
background distribution of Pearson's coefficients. For each feature f and
each of the 10,000 models generated in the previous step we computed a
predicted time series Xcβf and Xs;cβf , and correlated them with the
descriptor time series yf ;c: The p value was defined as the proportion of
Pearson's coefficients in this null distribution that are higher or equal to
the coefficient obtained for the original comparison between the pre-
dicted and the descriptor's time series (adding one to both numerator and
denominator to avoid zero p-values when no permutation equals or ex-
ceeds the observation). To assess the reproducibility of the reconstruction
over movies, we conducted a partial conjunction analysis (Heller et al.,
2007) considering all of the eight (in the absence of human face ratio
annotation) or nine p-values for each of the features. This analysis tests
the proportion of conditions (in our case –movies) that show a real effect
in a way which is valid under dependence between conditions. The re-
sults were FDR corrected (Heller et al., 2007).

2.4.3. Examining the relations between decoding accuracy and training data
parameters

We conducted further analyses to examine the accuracy of GCV-KRR
that relies on smaller chunks of the training data. These analyses can be
informative when considering the size of data required for future appli-
cations of the algorithm in fMRI.

First, we repeated the training and testing procedure described above
(i.e., generating models based on the training data without temporal
optimization and testing them using the nine testing movies), but with a
varying size of training data. A window of N sequential time points was
randomly selected with N increasing from 10 to 20,000 time points. The
incremental increase was of 10 time points within the range of 10-2000
time points, but it was increased to 200 in the range of 2200–22,000 due
to heavy computational costs. We repeated this procedure five times for
each window size and averaged the correlation coefficients across movies
and iterations. Since this analysis is computationally expensive, we per-
formed it only for the four models that yielded the most reliable decod-
ing, namely loudness, motion, speech, and face ratio. For illustrative
purposes, we computed and plotted a regression curve based on a
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logarithmic least square fitting (Weisstein, 2017). For each feature f, we
fitted a function in the form of

y ¼ aþ b ln x (9)

with coefficients computed as follows:

b ¼ n
Pn

i¼1

�
Ri ln Wsi

��Pn
i¼1Ri

Pn
i¼1 ln Wsi

n
Pn

i¼1ðln WsiÞ2 �
�Pn

i¼1 ln Wsi
�2 (10)

a ¼
Pn

i¼1Ri � b
Pn

i¼1 ln Wsi
n

(11)

n refers to the total number of time windows, Ri is the coefficient for the
correlation between the predicted and the observed descriptors averaged
over movies and iterations per time window, andWsi is the window size.
Since we had twice as many time windows in the range of 10-2,000 time
points, we doubled the weights given to Ri in the range of 2,200–22,000
by creating the R and Ws vectors with a duplication of the values
Ws2;200�22;000 and R 2;200�22;000.

Second, we examined the advantage of training our algorithm on data
obtained from five different movies in comparison to reliance on data
from each of the single movies. We repeated the training and testing
procedure (without temporal optimization) while limiting the training to
data from a single movie. To equalize the size of the training data, we
randomly selected an identical number of time points for each of the
training movies. According to the training movie for which we had the
minimal data, we included 2,576 time points in each single-movie
training data set. Five corresponding data sets with the same number
of time points were generated by randomly selecting these points from
the entire training data including all movies.

We computer the vector ΔRtm;f ;sm so that
ΔRtm;f ;sm ¼ Rtm;f ;all � Rtm;f ;sm, where Rtm;f ;sm refers to the Pearson corre-
lation between the predicted and observed descriptor for feature f at the
testing movie sm with a model was trained on the training movie tm.
Rtm;f ;all is similar except for the fact that the model was trained on all five
training movies and the correlations were averaged over the five itera-
tions. A 95% confidence interval of the mean difference was generated
around ΔRtm;f ;sm by sampling this vector with replacement
(bootstrapping).

In addition, to assess the similarity between the models that were
created based on data from the different single training movies, we
computed the correlations between the weight vectors.

2.4.4. Temporal optimization
The optimal temporal alignment between the BOLD time course and

the target descriptor may vary across voxels and descriptors. This phe-
nomenon can result from inter regional difference in hemodynamic
response properties or more interestingly, it may reflect the progression
of a functional process. Optimizing the alignment between the signals
may therefore improve prediction and provide significant functional
information.

However, a full voxel-wise combinatorial fitting is highly computa-
tionally demanding (for example, 4400 combinations in a case in which 4
possible lags are tested in a mask containing 400 voxels). To reach an
estimated solution, we used simulated annealing optimization (Kirkpa-
trick et al., 1983), which simulates the generation of crystals (i.e., min-
imum energy structures) when liquids slowly freeze. In this process, the
system is more tolerant to perturbations when the temperature is high,
but its tolerance is gradually decreasing when it is cooling down. A
formal description of the implementation of simulated annealing in our
study is provided in the Supplementary Materials.

Using Pearson correlation we compared the temporally optimized
predictions with the observed descriptors. The resulted Pearson co-
efficients were pooled across features and Z-transformed (to approximate
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normal distribution). We used one sided pairedWilcoxon signed rank test
to examine whether the temporal optimization increased the correlation
in an independent data set. This comparison was performed for every
individual subject with FDR correction for dependent tests (Benjamini
and Yekutieli, 2001).

To identify simple spatio-temporal patterns in the resulting optimized
lag maps, we conducted an exploratory analysis including only the model
maps that improved the prediction of the target features. Within each
cluster in the thresholded maps (with size > 5 voxels) we correlated the
optimal lag value (ranging from�1 to 2) with its X, Y, or Z coordinates to
detect sagittal, coronal, and axial temporal gradients. In addition, we
correlated the lag values with the Euclidean distance of the voxel from
the cluster's centroid to identify centrifugal and centripetal patterns.
Spearman correlation coefficients were computed in this test, and FDR
correction was applied to control for all of the comparisons within each
family of hypotheses (i.e., about either X, Y, and Z coordinates or the
distance from the centroid).

2.4.5. Specificity and reproducibility of the predictors
To further examine confounding effects across models, we tested

whether the temporally optimized target descriptor can be better pre-
dicted based on a model generated for other descriptors. Thus, for each
movie we compared Pearson's coefficients obtained for the comparison of
the target descriptor with either its corresponding average predictor or
the predictor of all other descriptors.

The measure of Inter-Subject Correlation (ISC) (Hasson et al., 2004)
has been widely used to assess the reliability of BOLD response patterns
in the context of naturalistic stimuli such as movies. We expected that our
method will yield predictors that not only significantly correlate with the
target descriptors, but are also highly similar across subjects. Therefore,
we used ISC to examine the similarity between individual predictors for
each of the features and movies.

Individual ISC (Hasson et al., 2004) was computed for subject s,
movie m, and feature f, as Pearson correlation between the predictor
computed for this subject and the average predictor over all other sub-
jects: ISCs;m ¼ r ðPrs;m; Prall�s;mÞ. For each of the audiovisual features and
movies we also computed ISCf ;m ¼ ISCs;f ;m. Relying on a previously
published protocol for estimating the significance of ISCs;m and ISCf ;m, we
applied a bootstrapping procedure that included phase randomization for
each Fourier component of the predictor time series and then the inverse
Fourier transformation (Silbert et al., 2014).

We generated 10,000 scrambled time series for each of the individual
predictors and computed ISCs;m and ISCf ;m for these randomized signals
as described above. P values for the empirical ISCs;m and ISCf ;m were
determined based on a comparison with the resulting null distribution.

2.4.6. Interpreting the weight vectors
The weight vector β cannot be neuroscientifically interpreted as is

since it reflects not only the signal of interest, but also other information
that improves prediction but is not directly related to the studied psy-
chological process (Haufe et al., 2014). In Valente et al. (2014) procedure
to remove the confounding effects of other targets has been proposed,
which is suited for large scale problems. However, even within a single
predictive model, some features can have a large weight to improve
prediction by canceling out elicited activity in other areas. To tackle this
problem, we followed a procedure that transforms β into a “forward
model”, which explains how X (the n� s-by-p concatenated matrix of the
training data) was generated from neural sources (Haufe et al., 2014).

This method, however, is based on the estimation of covariance be-
tween features (in our case, voxels), which is ill-posed since we have
more features than samples (n � s < p) and cannot be applied as is to our
problem. To generate forward models we therefore reduced the number
of voxels by selecting only the voxels that were deemed significant in at
least one out of k (k ¼ 6) predictive maps (with a total number of voxels
p1 ¼ 2;758). We first show that a prediction using only this subset of
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voxels is still significant (Fig. S2), and then we apply the transformation
suggested in (Haufe et al., 2014). In specific, we computed the activation
patterns vector Ac, whose values indicate both the strength and the di-
rection of the effect of the observed features on the data, as follows:

Ac ¼ ΣXβp1Σ
�1
y (12)

where ΣX ¼ E½XTX� and Σy ¼ E½yTy�. βp1 is an p1x k matrix with the β
weight vectors (predictive maps) computed for each of the features as
described above as columns (k is the number of descriptors and in this
case, k ¼ 6). y is a matrix, which includes the observed descriptors.

The p1x k matrix Ac was thresholded based on a permutation test. In
this test, activation pattern vectors were computed (Equation (11)) for
each of the 10,000 weight vectors that were generated using the
randomly shifted time series (see above). We used FDR correction for
multiple testing under dependency (Benjamini and Yekutieli, 2001)
with Q ¼ 0.05.

2.4.7. Music experience and loudness reconstruction veridicality
Finally, we tested whether a generalized fMRI model can be used to

reveal functionally meaningful intersubject differences. In specific, we
hypothesized that the loudness descriptor will be more accurately
reconstructed when applying the loudness model to data obtained from
individual with high relative to low musical experience.

The participants rated their acquaintance with the specific musical
pieces LM, GH, and MN (5-point scale) and filled a short questionnaire
regarding their musical training. The fMRI data were divided into two
groups based on the mean reported music-playing experience, which was
5.07, 5.86, and 5.78 years in LM, GH, and MN, respectively. An identical
division would have been obtained if a cutoff of 5 years of experience had
been selected as in previous neuroimaging studies of musical experience
(Chapin et al., 2010; Singer et al., 2016). The high-musical experience
group included 10 (4 females, 25.8 ± 4.05 years), 12 (5 females,
25.67 ± 3.77 years), and 11 (4 females, 26 ± 3.77 years) in LM, GH, and
MN. The corresponding low-experience groups included 22 (14 females,
25.8 ± 3.65 years), 21 (14 females, 25.67 ± 3.77 years), and 19 (13 fe-
males, 25.71 ± 3.75 years).

Temporally-optimized predicted descriptors were computed for each
musical piece and were compared with the average observed descriptors
as described above. We compared the veridicality of the predicted
loudness predictors between the high and low musical experience
groups. To note, these groups significantly differed in reported musical
experience (LM: Wilcoxon Z ¼ 4.48, p < 1 � 10�5, GH: Z ¼ 4.3,
p < 5 � 10�6, MN: Z ¼ 4.5, p < 1 � 10�5), but not in age (LM: Wilcoxon
Z¼ 0.12, p¼ 0.9, GH: Z¼ 0.31, p¼ 0.75, MN: Z¼ 0.45, p¼ 0.65), male-
female ratio (LM: χ2 ¼ 1.56, p ¼ 0.21, GH: χ2 ¼ 1.95, p ¼ 0.16, MN:
χ2¼ 2.92, p¼ 0.09), and acquaintance with themusical pieces (Wilcoxon
Z ¼ 0.65, p ¼ 0.52, GH: Z ¼ �0.34, p ¼ 0.73, MN: Z ¼ 0.32, p ¼ 0.75).

Individual Pearson correlation coefficients were computed for the
comparison between the predicted and observed loudness descriptors.
We tested the hypothesis that musical experience is associated with
reconstruction accuracy for each of the musical conditions by comparing
the accuracy obtained for the two groups using two alternative methods:
(a) one-sided Wilcoxon test; (b) a permutation test with 10,000 random
divisions of the data into two groups whose sizes are identical to those of
the original groups.

3. Results

Based on GCV-KRR analysis of the training data, we produced 3-
dimensional weight maps in a standardized Talairach space for each of
the features. These models include linear weights per voxel. These
models are available in nifti format as Supplementary Material. Thus, a
predicted value for a specific feature in a given volume can be computed
by simply summing the results of the voxel-wise multiplications of these
weights with the corresponding voxel-wise Z-scored BOLD values. We
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generated continuous descriptors that predict each of the six features for
each of the nine movie clips on a moment-to-moment basis. We next
describe the results of the testing of these models using an independent
data set, the effects of the temporal optimization of these models, and the
reliability and specificity of features of these models. Finally, we test
whether loudness reconstruction veridicality covaries with group dif-
ference in musical experience.

3.1. Prediction models for audiovisual features and their accuracy

In terms of correlation between the predicted and observed de-
scriptors, we found three features with significant results in all of the nine
new testing movies: loudness (R¼0.6; 0.48� R� 0.81), speech (R¼0.58,
0.40 � R � 0.81), and motion (R¼0.59; 0.44 < R < 0.81). A partial
conjunction analysis (Heller et al., 2007) indicated that a real effect is
indeed obtained across all of the nine tested movies for these features
(QFDR<0.05). In the case of face ratio, we found significant correlations
for 7 out of 8 movies (R¼0.56, 0.36 � R � 0.69), and a marginally sig-
nificant correlation (R ¼ 0.4, p < 0.06) for the eighth movie (the overall
R ¼ 0.54). This proportion of significant effects survived an FDR cor-
rected conjunction analysis.

On the other hand, lightness decoding produced a less reliable model
as 6 out of 9 predicted descriptors significantly correlated with the
observed descriptors (R¼0.22, �0.12 � R � 0.43). In the case of the
brightness model, the predicted and the observed descriptors were
significantly correlated only in two movies (R¼0.18; �0.14 � R � 0.41).
In both cases, the FDR corrected conjunction analysis indicated that a
significant effect appears in at least one movie.

We further applied partial conjunction analysis to test the correlation
between the predicted and the observed descriptors for each of the in-
dividual runs (for raw data, see Supplementary Data). After FDR
correction we found a significant effect (QFDR<0.05) in 47.6%, 49.2%,
49.2%, 39.7%, 1.6% and 3.2% of the runs in the cases of loudness,
speech, motion face ratio, lightness, and brightness, respectively. The
average Pearson's correlation between the individual predicted and
observed descriptors over runs were 0.46, 0.45, 0.49, 0.39, 0.15, and
0.15, respectively. As evident in the right charts in Fig. 2, the predicted
descriptors showed high similarity across subjects. A quantitative anal-
ysis, which is described in the Supplementary Materials, indicates a high
intersubject reproducibility of the predicted descriptors (Table S1).

3.2. Relation between prediction accuracy and size and type of the training
data

A pattern of logarithmic growth in the average prediction accuracy
with the increase in the number of data points in the training set was
observed in all four tested models (loudness, speech, motion, and face
ratio; Fig. 3). We compared these values to the averages of the correlation
coefficients reported above, which were obtained using training data sets
of ~24,000 time points. Thus, for instance, based on the logarithmic
model fitted to the data, we estimate that in order to reach 90%, 95%,
and 99% of the average correlations reported above, one would need
approximately 4,250, 8,000, 13,000; 2,900, 7,700, 16,700; 2,561, 5,400,
9,800; and 4,800, 7,800, and 11,512 time points in the case of loudness,
speech, motion, and face ratio, respectively.

We also examined the benefit of including data for five different
movies in the training set rather than relying on data from a single movie.
When assessing the effect on the four more successful models, we found
that in 40% of the cases, the prediction accuracy was improved with the
inclusion of all five movies. The results are described in details the
Supplementary Materials (Fig. S4).

3.3. Temporal optimization

We next conducted a voxel-wise optimization of the temporal
252
alignment between the BOLD time series and the observed descriptor in
the training set. The optimization procedure increased the correlation
between the predicted and observed descriptors in the cross-validation
subset (i.e., a subset of the training data that was kept aside for optimi-
zation) in 11.27%, 7.69%, 10.3%, 18.3%, 48.9%, and 86.22% for loud-
ness, speech, motion, face ratio, lightness, and brightness, respectively.
Its efficiency was assessed in an independent test set (Figs. S3a–f). The
pattern of decoding accuracy across movies was similar to the results of
the non-optimized procedure, but with higher average correlations
(except for brightness; see Fig. 4): loudness – R¼ 0.62 (0.42� R� 0.85),
speech – R ¼ 0.60 (0.39 � R � 0.81), motion – R ¼ 0.60
(0.43 � R � 0.83), face ratio – R ¼ 0.56 (0.34 � R � 0.71), lightness –
mean R ¼ 0.23 (0.06 � R � 0.38), brightness – R ¼ 0.15
(�0.13� R � 0.42). The correlations between the average predicted and
the observed descriptors were significant in all movies for loudness,
speech, and motion, and in all movies but one (for which p ¼ 0.054) for
face ratio (Fig. 4). These results survived an FDR corrected conjunction
analysis. In the case of brightness and lightness, 3 and 4 out of 9 corre-
lations were significant respectively, and none of them survived the FDR
corrected conjunction analysis.

A paired one-sided Wilcoxon signed rank test, which was performed
for every individual session in the test data set (i.e., n¼ 63 for all features
but face ratio for which n ¼ 58), indicated that temporal optimization
significantly increased the accuracy of loudness (Z ¼ 5.94,
QFDR<5 � 10�8), speech (Z ¼ 3.42, QFDR<0.005), motion (Z ¼ 4.2,
QFDR<0.0005), and face ratio (Z¼ 4.42, QFDR<0.0001)models, but not of
lightness (Z ¼ 1.6, NS) and brightness (Z ¼ �1.05, NS) models. Fig. 6
visualizes the resulting spatiotemporal maps of the four more success-
fully optimized models (the original models are presented in Fig. 5).

At the individual level, a conjunction analysis indicated significant
correlation between the temporally optimized predicted and observed
descriptors (QFDR<0.05) in 61.9% of the runs for loudness, speech, and
motion, 50% for face ratio, 1.6% for lightness, and 4.8% for brightness,
respectively. Apart from the case of brightness, the average individual
Pearson's coefficients were all higher than in the non-optimized predic-
tion: 0.48, 0.47, 0.51, 0.42, 0.16, and 0.14, respectively.
3.4. Specificity of the predictive models

We examined whether the correlation of a specific observed
descriptor with its corresponding predicted descriptor is higher than its
correlation with predicted descriptors generated based on models of
other features (Fig. 7; cf. Fig. S6 for specificity of the observed de-
scriptors). Overall, we found high prediction specificity for the predictors
of loudness, speech, motion, and face ratio. Considering all of the
reciprocal correlations between these features for all movies, only in
three cases (out of 102 possible), the observed descriptor was not best
predicted by its corresponding model (e.g., speech better predicted
loudness in the movie Denali). In one case (out of other 102 possible
cases), the predicted descriptor had higher correlation with other
observed descriptors than with its own target. In one other case, motion
and loudness were equally predicted by the motion predictor. The two
other models showed lower prediction specificity. Lightness and bright-
ness were the best predictors of lightness and brightness observed de-
scriptors only in 5 and 3 out of 9 movies, respectively. The predicted
descriptors of lightness and brightness had highest correlations with the
corresponding observed descriptors only in 2 and 0 movies, respectively.
3.5. Loudness reconstruction veridicality and group differences in musical
experience

To examine the efficiency of our method in capturing meaningful
inter-group differences, we tested whether music loudness can be more
accurately decoded from data of individuals with high musical experi-
ence. We used data obtained during the listening to Ligeti's Musica
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Fig. 2. Reconstructed time series (predicted descriptors) and observed descriptors for two movies: Black Swan (N¼8), and Forrest Gump (N¼5). The observed descriptors
(dashed red lines) and the average predicted descriptors (black line) are presented in the left chart for each of the panels. The right charts indicate the similarity of the reconstructed time
series across subjects, as the different individual predicted descriptors are presented in different colors. The predictions were derived from the temporally optimized models. For other
movies, see Figs. S3a–f. The presented predictors are derived from temporally optimized models.
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Ricercata (LM), Glass's “Hours” (GH), and Mussorgsky's Night on Bald
Mountain (MN; see Supplementary Materials). Although the loudness
model was generated using multimodal movie data, the average pre-
dicted descriptor significantly correlated with the observed loudness
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descriptor of the unimodal musical pieces LM (R ¼ 0.71, p < 0.001) and
MN (R ¼ 0.55, p < 0.005). In the case of GH, the observed loudness
descriptor significantly correlated with the average predicted descriptor
of the high-musical experience group (R ¼ 0.29, p < 0.05), but only
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Fig. 3. Relations between prediction accuracy and training data size. The y-axis denotes the correlation between the predicted and observed descriptors averaged over the testing
movies. The x-axis denotes the number of points in the data that were used for GCV-KRR training. A logarithmic least square fitting curve is presented in black. The red dots represent the
average prediction obtained by using 75% of all training data as reported in the text.
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marginally correlated with the overall average predictor (R ¼ 0.15,
p ¼ 0.08). Furthermore, significantly higher correlation between the
predicted and observed loudness descriptor was found for high-relative
to low-musical experience group in all three conditions as indicated by
both permutation test (random assignment of participants to the groups)
and non-parametric Wilcoxon test (LM: Z ¼ 2.05, p(Wilcoxon) < 0.02,
p(permutations) < 0.03; GH: Z ¼ 1.96, p(Wilcoxon) < 0.03, p(permuta-
tions) < 0.05, MN: Z ¼ 2.11, p(Wilcoxon) < 0.02, p(permuta-
tions) < 0.02; Fig. 8). FDR corrected conjunction analysis confirmed a
significant effect in any of the three conditions (for both
testing methods).

3.6. Components of the standard brain models for audiovisual features

Our version of GCV-KRR analysis allows for the interpretation of the
linear contribution of every voxel in the model to the audiovisual feature
of interest (predictive maps). However, for this aim, the multiplicity of
target features has to be accounted for (Valente et al., 2014) and the
multi-voxel models should be transformed into mass univariate models
(Haufe et al., 2014). In our application, we first generated the predictive
maps, then re-generated the models based on a subset of voxels included
in the thresholded union mask, and finally transformed the predictive
models into “forward models” following the procedure described in
Haufe et al. (2014).

The thresholded predictive maps of the six models are visualized in
Fig. 5 (and are provided in the Supplementary Material). Details on the
weight clusters are presented in Table 2. While large positive and
negative clusters (mainly cortical) survived the test when examining the
loudness, speech, motion and face ratio models, in the cases of lightness
and brightness we found only a few occipital clusters, and two small
pulvinar and cuneus clusters, respectively. The predicted descriptors that
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were derived from models computed over the subset of voxels in the
union mask (Fig. S7) were slightly less correlated with the observed
descriptors (Wilcoxon Z ¼ 1.97, p ¼ 0.0499) relative to the original
predictors (computed over all gray matter voxels). The difference be-
tween the median correlations across movies was small: 0.45 versus 0.49,
respectively (see Fig. S2).

Based on these constrained predictive models, we next produced
generative forward models, whose entries may be interpreted as relevant
activations and deactivations (Fig. 5B, Table 3) for loudness, speech, and
motion. In the case of the face size model, the transformed weights did
not survive FDR-corrected permutation test, although a bilateral cluster
of negative parahippocampal values with p ¼ 1 � 10�5 at its peak
was observed.

3.7. Spatiotemporal maps of the models

Since slow propagation of neural processing may be reflected in
lagging BOLD signals (see Formisano and Goebel, 2003), we were
interested in patterns within our spatiotemporal models. We looked for
axial, coronal, and sagittal gradients, as well as centrifugal (higher lags
for voxels with greater distance from the centroid) and centripetal pat-
terns. The exploration was limited to 54 clusters pooled over the lag
optimization maps of loudness, speech, motion, and face ratio. The re-
sults are presented in Table 4. Two selected spatiotemporal patterns are
visualized in Fig. 9.

4. Discussion

Our findings suggest that the combination of GCV-KRR and temporal
optimization via simulated annealing facilitates the production of fairly
reliable predictive models for continuous audiovisual features as
www.manaraa.com
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Fig. 4. Accuracy and reliability of the reconstruction of audiovisual features. Pearson's R coefficients for the correlation between the predicted and the target descriptors are
presented for each of the movies and audiovisual features. Note that since the movie Denali contained no images of human face, face ratio prediction was not tested in this case.
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Fig. 5. Brain models extracted via GCV-KRR for the audiovisual features of interest. (A) MVPA maps thresholded at QFDR<0.05 following a permutation test. (B) Forward models
computed based on the MVPA maps following the transformation method described in (Haufe et al., 2014).
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observed in uncontrolled cinematic content. Four of these models –

loudness, motion, speech, and face ratio - show good generalization over
contents, subjects, and scanning conditions both at the individual and the
group levels. The decoding robustness is further supported by the high
similarity of the predictor time series across subjects, as suggested by our
ISC analysis (Table S1).

Apart from the reliability of the reconstruction, our method also
yields interpretable brain models for the examined audiovisual features.
In general, the spatial constellations of these models are highly congruent
with the relevant neuroscientific literature. The loudness model contains
bilateral high positive weights for the primary auditory cortex and the
left auditory thalamic medial geniculate nucleus (as well as a cluster in its
right homologue, but with lower weights), which are key components in
the auditory pathway (Hudspeth et al., 2013). The speech model (after
accounting for multiple targets) includes large clusters of high positive
weights across the posterior superior temporal regions overlapping with
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the Wernicke area and its right homologous, which are implicated in
language processing (Bigler et al., 2007). The motion model consists of
focal positive weights in the classical motion processing region MT\V5
(Howard et al., 1996), as well as in the dorsal cuneus/V6 and cingulate
sulcus visual area (CSv). Both of these regions have been implicated in
the perception of wide-field, complex, and coherent movement, and
especially in self-motion (see Cardin and Smith, 2011; Pitzalis et al.,
2015; Fischer et al., 2012; Wall and Smith, 2008, respectively). Finally,
while the face ratio model did not survive the transformation into a
forward model, it includes bilateral positive occipital face area weights,
and bilateral negative parahippocampal place area weighted, possibly
reflecting a parametric trade-off between face and scene perception (see
Vanduffel and Zhu, 2015). PH1 and PH2, which are part of the face ratio
model, respond preferentially to scenes and landmarks and show pe-
ripheral bias (Baldassano et al., 2016). Thus, as the face ratio is associ-
ated with the dominance of the face relative to the background in the
www.manaraa.com



Fig. 6. Successfully optimized spatiotemporal models for audiovisual features. Optimal lags (3 s for lag) are visualized in different color schemes for positive and negative weights.
The lag maps are presented after masking them by the thresholded maps presented in Fig. 5.
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visual field, the negative weights of the PHC probably reflect the
enhanced processing of scene-related elements when the face size
is small.

An apparently surprising finding is the cluster of positive weights in
the primary visual cortex and adjacent sections of the lingual gyrus
(Table 3, Fig. 5B) in the thresholded generative (forward) model of sound
loudness. In fact, this finding is in line with substantial evidence that has
accumulated over the past decade, pointing to the responsiveness of the
primary visual cortex to auditory input (for a review, see Murray et al.,
2016). These works support the notion that regions that were considered
as unimodal visual areas are in fact implicated in multisensory process-
ing. Considering the type of stimuli used in our study, our findings point
to the possibility that loudness consistently affects visual processing in
the primary visual cortex in natural perception.

Notable differences can be observed between the predictive and the
forward models (Fig. 5). The comparison between the maps points to
intriguing possibilities that are not evinced by standard univariate ana-
lyses alone. Thus, for instance, while the loudness predictive model in-
cludes large bilateral clusters of negative posterior insula/parietal
operculum weights, these voxels are positively weighted in the forward
model. It is possible that while loudness-related activation is measured
both in A1 and the posterior operculum, the contrast between the signals
of these adjacent regions filter the signal and yields a more accurate
loudness decoding.

On the other hand, the differences between the models may also
reflect functional rather than technical aspects. This may be the case with
our findings on the dorsal V3B and ventral LO1 and LO2 weights in the
motion intensity model. Both of these regions were previously func-
tionally defined as “kinetic occipital” (KO) areas, which responds more
strongly to motion boundaries (an important cue for object-background
separation) than to transparent motion (Dupont et al., 1997; Larsson
et al., 2010; Larsson and Heeger, 2006). However, in the motion model
we found positive weights for the dorsal region, but negative ventrolat-
eral occipital weights. In the generative motion model, dorsal V3B is
positively weighted, while no activation is observed in LO1 and LO2.
257
Previous studies already reported on differences between the ways in
which these KO regions process motion. For example, LO1 and LO2
showed increased responses to images of objects created by dot move-
ment, while an area that overlaps with our dorsal V3B cluster was sen-
sitive to moving edges but not to shapes (Vinberg and Grill-Spector,
2008). These observations are congruent with a hierarchical model of
motion boundary processing, which posits that local moving edges are
identified by a set of linear filters in the first step and the resulting in-
formation is then integrated to generate higher-order perception in the
second step (Larsson et al., 2010). In line with this model, it is possible
that a high rate of motion boundary cues will trigger increased processing
in regions implicated in the first-order filtering, but will also be too rapid
to elicit a coherent integration, which implicates high-level perception
regions. This interpretation is congruent with evidence suggesting that
the lateral occipital cortex (LOC) is the highest purely visual area in the
ventral stream hierarchy (Lehky and Tanaka, 2016).

Thus, the ratio of LOC and V3B activity levels may be functionally
meaningful as an index of motion perception acuity. In other words, the
contrast between the activity levels of these (non-adjacent) regions may
not only technically allow for better analytical prediction, but also reflect
a functional status, which is interpreted by higher-level systems in the
brain. The advantage of multi-voxel modeling is evident in this case as
the LOC-V3B interplay is not manifested as LOC deactivation following
intensive motion in the univariate generative model. Our results point to
the potential of a focused analysis on the interplay between the activity
levels of these regions in the context of motion perception.

The temporal optimization, which was applied as part of our pro-
cedure, significantly improved the prediction of the four best predictive
models generated by GCV-KRR. The interpretation of the resulted
spatiotemporal models (with the optimized lags) in psychophysiological
terms should be taken with caution, since the spatiotemporal gradients
may be caused by factors such as regional variability in neurovascular
coupling parameters (i.e., hemodynamic rather than neural latencies).
However, these patterns may nevertheless reflect slow gradual recruit-
ment of neural populations (Formisano and Goebel, 2003). At least in one
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Fig. 7. Correlations across predictors and descriptors. The correlations between the average predictor for each of the features and the target descriptors are presented for each of the
movies. The value in each cell indicates Pearson's correlation coefficient for the prediction of the column target descriptor by the row predictor. Note that in the case of the movie Denali, no
face ratio descriptor was extracted.

Fig. 8. Reconstruction of loudness time-courses in three musical pieces based on the general loudness model and the fMRI data. (a) Reconstruction accuracy is compared for
individuals with high and low musical experience in terms of the average Pearson correlation coefficient (and the standard error) between the individual predicted descriptor and the
observed loudness descriptor. (b) Individual predicted descriptors (colored curves) and the observed loudness descriptor (solid black curve) after Z-scoring for professional musicians and
non-musicians in LM. Descriptors of 11 out of 21 subjects with low experience were randomly selected so that the visualization will include an even number of curves for both groups.
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Table 2
Details on the model maps for the examined audiovisual features.

Region label Mean
weight

Max
weight

Cluster
size

X Y Z

Sound loudness
Positive weights
R transverse
temporal gyrus/
Heschl's
convolutions,
superior temporal
gyrus

4 8 272 51 �13 7

L transverse
temporal gyrus/
Heschl's
convolutions,
superior temporal
gyrus

4.08 7.14 235 �48 �19 7

Posterior cingulate
cortex

2.65 3.07 11 �3 �40 7

L medial geniculate
nucleus
(thalamus)

2.31 2.71 8 �12 �28 �2

Negative weights
R posterior insula,
parietal
operculum

�3.02 �4.57 93 36 �19 19

L posterior insula �3.11 �4.91 55 �36 �19 16
R superior temporal
sulcus

�2.66 �3.35 37 48 �16 �5

R superior temporal
gyrus

�2.46 �2.81 18 51 �43 13

R superior frontal
gyrus

�2.43 �3.07 16 6 35 46

Medial frontal gyrus �2.25 �2.11 8 3 �13 49
Speech
Positive weights
R superior temporal
gyrus, middle
temporal gyrus

3.96 7.47 296 63 �10 4

L superior temporal
gyrus

3.98 8 242 �60 �22 4

L middle temporal
gyrus

2.95 3.55 23 �51 �43 10

L fusiform gyrus,
inferior occipital
gyrus

2.79 4.52 99 �39 �79 �11

L precentral gyrus 2.94 4.16 36 �48 �7 52
R precentral gyrus 2.27 2.35 6 51 �1 43
L medial
occipitotemporal
gyrus

2.85 3.59 20 �15 �67 �11

R V2v 2.85 3.47 22 3 �70 4
L V1v, V2v 2.79 3.3 7 �6 �67 �2
L intraparietal sulcus 2.57 3 13 �24 �55 43
R declive 2.27 2.66 12 9 �67 �20
R postcentral gyrus 2.26 2.56 7 54 �28 40
R red nucleus/pons 2 2.19 8 6 �25 �20
Negative weights
L parahippocampal
gyrus (PHC1)

�3.25 �3.9 12 �27 �49 �5

R middle temporal
gyrus

�2.93 �3.65 12 66 �16 �8

L middle temporal
gyrus

�2.28 �2. 5 8 �42 �61 1

L transverse
temporal gyrus

�3 �3.25 7 �33 �28 13

R occipitotemporal
gyrus

�2.79 �2.94 7 21 �55 �8

R superior temporal
gyrus

�2.66 �2.86 8 63 �31 16

R postcentral gyrus �2.37 �2.84 23 39 �28 58
R angular gyrus �2.44 �2.82 8 30 �79 4
R precentral gyrus �2.21 �2.56 13 39 8 31
L posterior superior
fissure
(cerebellum)

�2.44 �2.53 8 �18 �76 �23

L superior frontal
gyrus

�1.98 �2.1 8 �27 44 31

Table 2 (continued )

Region label Mean
weight

Max
weight

Cluster
size

X Y Z

Motion
Positive weights
Lingual gyrus (RþL
V1v & V2v, R V3v,
R VO2)

5.42 8 223 9 �76 �8

R posterior cingulate
sulcus

4.75 7.42 41 12 �22 42

L posterior cingulate
sulcus

3.89 5.82 27 �12 �22 40

R cuneus (dorsal),
V3B, V6

4.77 7.33 142 18 �85 22

L cuneus (dorsal),
V3B, V6

4.04 5.72 104 �18 �85 19

L medial temporal
(MT) area/V5

4.77 6.13 30 �40 �66 4

Precuneus 4.96 3.92 37 9 �49 52
R posterior insula 3.62 4.35 24 36 �34 19
L posterior insula 3.93 4.35 8 �39 �34 19
Negative weights
Cuneus (V1d, V2d) �4.26 �6.28 92 �3 �82 16
R lateral occipital
complex, inferior
occipital gyrus

�4.63 �6.16 126 30 �85 �11

L inferior occipital
gyrus

�3.89 �4.66 32 �30 �85 �17

Brightness
Negative weights
L pulvinar �7.21 �7.97 6 �15 �28 19
Cuneus �5.3 �6.45 7 �6 �76 13
Lightness
Positive weights
L inferior occipital
gyrus, fusiform
gyrus

6.05 8 45 �39 �79 �11

R inferior occipital
gyrus

5.70 6.86 11 39 �79 �11

Negative
weights

L middle occipital
gyrus

�4.95 �5.90 8 �39 �70 7

Face ratio
Positive weights
L inferior temporal
sulcus

7.23 8 7 �39 �76 �8

R fusiform face area,
inferior temporal
sulcus

5.73 7.2 47 39 �76 �11

R precentral gyrus 5.68 6.24 6 48 �4 46
Negative weights
R parahippocampal
gyrus (PHC1,
PHC2), fusiform
gyrus (VO2)

�8.49 �13.97 117 27 �49 �5

L parahippocampal
gyrus (PHC1,
PHC2)

�8.38 �13.36 85 �27 �49 �5

R transverse
occipital sulcus

�6.17 �7.48 36 33 �76 10
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case the observed patterns in our data is congruent with previous liter-
ature, indicating the reliability of the method: the centripetal or bifocal
spatiotemporal pattern identified in the right MTG/STG in the speech
map is in line with a prominent theoretical model of the cortical orga-
nization of speech processing (Hickok and Poeppel, 2007). This model
suggests that while the more dorsal aspect of the STG, including the
parietal operculum, is part of a dorsal stream implicated in auditory
motor integration, a more anterior section of the STG facilitates spec-
trotemporal analysis of the auditory input. The right MTG/STG cluster in
our speech model is split in a way, which is consistent with this bifocal
anatomical segregation.

While audiovisual decoding was highly reliable in four different
cases, lightness and brightness intensities were not reconstructed
www.manaraa.com



Table 3
Details on the forward model maps for the examined audiovisual features after correction
for multiple targets.

Region label Mean
T

Max T Cluster
size

X Y Z

Sound level
R transverse temporal
gyrus/Heschl's
convolutions, superior
temporal gyrus

4.38 7.61 158 51 �13 7

L transverse temporal
gyrus/Heschl's
convolutions, superior
temporal gyrus

4.64 7.62 158 �39 �31 10

V1, lingual gyrus 4.64 4.44 98 18 �67 �8
R posterior insula �3.74 �4.88 51 36 �19 19
L posterior insula �3.39 �3.92 9 �36 �19 13
L posterior insula �3.15 �3.32 6 48 �4 �11
R inferior semi lunar lobule
(cerebellum)

�3.47 �3.66 6 18 �73 �38

Speech
R superior temporal gyrus,
middle temporal gyrus

4.02 6.37 167 63 �7 1

L superior temporal gyrus,
middle temporal gyrus

4.33 6.55 158 �60 �25 4

L medial occipitotemporal
gyrus

3.39 3.98 11 �18 �97 �11

L fusiform gyrus 3.33 3.80 10 �33 �46 �20
L superior frontal gyrus �3.64 �4.34 6 12 65 7
L transverse temporal gyrus �3.26 �3.71 7 �36 �28 10
Motion
R lingual gyrus 4.01 5.71 88 18 �67 �8
L lingual gyrus 3.17 3.47 9 �12 �73 �5
R cuneus (dorsal), V3B, V6 3.56 4.62 79 18 �79 22
L cuneus (dorsal), V3B, V6 3.81 5.61 70 �18 �88 19
R posterior cingulate sulcus 4.03 5.35 15 12 �22 40
L posterior cingulate sulcus 3.97 5.29 11 �12 �22 40
R medial temporal (MT)
area/V5

3.61 4.46 9 39 �61 4

L medial temporal (MT)
area/V5

3.50 4.38 19 �39 �67 4

R parahippocampal gyrus 3.44 4.06 11 18 �43 �8
Vermis (cerebellum) 3.40 3.22 6 0 �70 �32
Cuneus (V1d, V2d) �3.90 �5.60 65 �3 �79 16
R lateral occipital complex,
inferior occipital gyrus

�3.35 �3.85 13 27 �85 �14

L middle occipital gyrus �3.25 �3.53 13 �30 �79 7
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reliably. This intriguing null finding may be explained by the funda-
mental non-linearity of luminance perception in the visual system
(Fiorentini, 2004; Gilchrist et al., 1999) as manifested by functions such
as edge enhancement and dynamic range adjustments. It is possible that
future implementation of non-linear kernels will yield better results.
Interestingly, while linear models failed to predict lightness intensity, the
linear sound intensity model did yield fairly reliable accurate predictions.
Table 4
Spatiotemporal patterns in the predictive models.

Location Model Valence

R insula loudness negative weights
R insula loudness negative weights
R insula loudness negative weights
R insula loudness negative weights
L posterior insula loudness negative weights
R primary auditory cortex loudness positive weights
R Superior and middle temporal gyri speech positive weights
R Superior and middle temporal gyri speech positive weights
R Superior and middle temporal gyri speech positive weights
L medial occipitotemporal gyrus speech positive weights
R middle temporal gyri speech negative weights
L precentral gyrus speech positive weights
R lateral occipital complex motion positive weights
L lateral occipital complex motion positive weights
R parahippocampal gyrus face ratio negative weights
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This difference points to an important dissimilarity between these mo-
dalities: while the visual input is nonlinearly normalized, the auditory
processing linearly maintains key properties that may support functions
such as distance estimation.

A key finding in our study is the increased veridicality of loudness
reconstruction among individuals with high musical experience, which
points to the sensitivity of our method to functionally meaningful inter-
group differences. It should be noted that these findings are preliminary
in terms of their significance to the research of music perception. For
example, it is yet to be tested whether similar intersubject differences can
be found when reconstructing other auditory features such as pitch and
tempo. Another open question is whether this difference is indeed related
to acquired skills or alternatively to biological predispositions. However,
regardless of the specific interpretation given to the findings, they sug-
gest that the accuracy level of the feature reconstruction from the indi-
vidual brain may comprise a valuable neuropsychological measure and a
supplementation to existing neural decoding tools.
4.1. Caveats, limitations and potentials

The accuracy and reliability of the decoding of some of the audiovi-
sual features examined here is a noteworthy achievement considering the
heterogeneity of the data and the multiple error sources. Such outcomes
depend on numerous parameters including the accurate annotation of the
audiovisual features, sufficiently linear mapping between the stimulus
magnitude, the neural activation and the BOLD signal, a proper alloca-
tion of the subject's attention to the movies, inter-subject similarity in the
brain's reaction to the content, valid fMRI data acquisition, reliable pre-
processing procedures, accurate registration of the functional and
anatomical data, and a solid standardization of the brain images. Given
this set of methodological challenges, the fairly reliable decoding not
only provides evidence for the robustness of the MVPA method applied
here, but also validates the set of brain imaging tools and standardization
procedures that were applied to acquire and process the data.

The robustness of our decoding approach is indeed limited by any of
the above-mentioned parameters, but they may also be further optimized
to increase the accuracy and replicability of the results. Thus, for
instance, the co-registration of the functional data may be improved
using cortex-based alignment (Frost and Goebel, 2012) and inter-subject
cortical alignment (Frost and Goebel, 2013; Sabuncu et al., 2010).
Hyper-alignment across subjects may also be performed based on one
common movie (or its part) shown to all subjects (Chen et al., 2015;
Guntupalli et al., 2016; Haxby et al., 2011). In addition, temporal and
spatial filtering parameters may be fitted as part of the optimization
procedure considering their added value to the prediction.

While our decision to use uncontrolled and highly variable cinematic
stimuli provided an appropriately challenging context for validating the
decoding generalizability, this choice also entails the methodological risk
www.manaraa.com

Pattern R P

centrifugal 0.44 QFDR<0.005
axial (posterior-anterior) 0.42 QFDR<0.005
coronal (superior-inferior) 0.57 QFDR<0.0001
sagittal (medial-lateral) 0.39 QFDR<0.01
coronal (inferior- superior) 0.43 QFDR<0.05
sagittal (medial-lateral) 0.27 QFDR<0.0005
centripetal 0.19 QFDR<0.05
axial (posterior-anterior) 0.18 QFDR<0.05
coronal (inferior- superior) 0.32 QFDR<0.0001
axial (posterior-anterior) 0.66 QFDR<0.05
axial (posterior-anterior) 0.83 QFDR<0.05
coronal (superior- inferior) 0.68 QFDR<0.0005
sagittal (medial-lateral) 0.51 QFDR<0.05
sagittal (medial-lateral) 0.32 QFDR<0.01
sagittal (lateral -medial) 0.29 QFDR<0.05



Fig. 9. Centrifugal (a) and centripetal (b) spatiotemporal patterns in optimized models for audiovisual features. The colors represent the optimized temporal shift for the voxel's
time series in relation to the descriptor (after it was convolved with HRF) so that �1 indicates that the BOLD series was shifted backward in one time point relative to the descriptor, and 1
indicates a single time point shift in the other direction. Yellow to red colors indicate positive weights, while pale blue to blue colors indicate negative weights.
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of modeling spurious and accidental correlations between features.
Although we selected varied audiovisual materials with diverse struc-
tures of cross-feature correlations (see Fig. S6) to reduce such confounds,
our stimuli may still include such correlations that result from common
cinematic stylistic strategies (e.g., simultaneous intensification of motion
and loudness). In this case, our models might be less generalizable to
content other than directed movies. Therefore, future research should
further test the validity of our models using controlled data sets to assess
their bias to accidental correlations. It should also make use of non-
directed movies to better account cross-feature correlations that are not
resulting from cinematic style (see Adolphs et al., 2016 for a discussion
on the benefits of naturalistic designs).

Furthermore, while in principle GCV-KRR can be used to generate
generalizable brain models for any annotated continuous mental and
perceptual feature, the current proof-of-concept study focuses on the
decoding of coarse and salient features. It does not warrant the successful
decoding of more refined features (e.g., subtypes of motion or sound)
whose investigation may have higher value in specific scientific contexts.
The validity and productivity of our decoding method in these cases has
yet to be proven.

Finally, validated decoding models may be employed in various
neuroscientific and clinical contexts. For example, naturalistic stimuli
and GCV-KRR may be combined to produce multi-feature fMRI localizer,
which will simultaneously demarcate brain correlates of multiple pro-
cesses. Moreover, given the high reproducibility of the reconstructed
time series across subjects and the evidence on the sensitivity of this
method to inter-individual factors, GCV-KRR could be used to generate
population norms for patterns of reaction to specific stimuli. The extent
to which a specific feature can be reliably decoded from one's neuro-
imaging data is a potential neuroscientific measure or even a biomarker
that may be used for clinical ends. Current models may be used, for
instance, to characterize and study perception during sedation and
minimal conscious states, hearing loss, verbal deficiencies, and face
perception.

5. Conclusions

MVPA based on the combination of GCV-KRR and temporal optimi-
zation via simulated annealing produces a fairly accurate, reliable, and
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generalizable reconstruction of four coarse audiovisual features when
testing cinematic content: loudness, speech, motion intensity, and face
ratio. This method also produces interpretable spatiotemporal brain
models, which are congruent with the literature but also suggest addi-
tional insights. Based on these findings and possible future optimizations,
we believe that this approach offers a reliable and valuable tool for
scrutinizing dynamic neural processes in both scientific and diag-
nostic contexts.
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